The spt-crank for overpartitions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank and Crank Moments for Overpartitions

We study two types of crank moments and two types of rank moments for overpartitions. We show that the crank moments and their derivatives, along with certain linear combinations of the rank moments and their derivatives, can be written in terms of quasimodular forms. We then use this fact to prove exact relations involving the moments as well as congruence properties modulo 3, 5, and 7 for som...

متن کامل

On Spt-crank Type Functions

In a recent paper, Andrews, Dixit, and Yee introduced a new spt-type function spt ω (n), which is closely related to Ramanujan’s third order mock theta function ω(q). Garvan and Jennings-Shaffer introduce a crank function which explains congruences for spt ω (n). In this note, we study asymptotic behavior of this crank function and confirm a positivity conjecture of the crank asymptotically. We...

متن کامل

On the Distribution of the spt-Crank

Andrews, Garvan and Liang introduced the spt-crank for vector partitions. We conjecture that for any n the sequence {NS(m,n)}m is unimodal, where NS(m,n) is the number of S-partitions of size n with crank m weight by the spt-crank. We relate this conjecture to a distributional result concerning the usual rank and crank of unrestricted partitions. This leads to a heuristic that suggests the conj...

متن کامل

The First Positive Rank and Crank Moments for Overpartitions

In 2003, Atkin and Garvan initiated the study of rank and crank moments for ordinary partitions. These moments satisfy a strict inequality. We prove that a strict inequality also holds for the first rank and crank moments of overpartitions and consider a new combinatorial interpretation in this setting.

متن کامل

Rank Differences for Overpartitions

The rank of a partition is the largest part minus the number of parts. This statistic was introduced by Dyson [14], who observed empirically that it provided a combinatorial explanation for Ramanujan’s congruences p(5n + 4) ≡ 0 (mod 5) and p(7n + 5) ≡ 0 (mod 7). Here p(n) denotes the usual partition function. Specifically, Dyson conjectured that if N(s,m, n) denotes the number of partitions of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2014

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa166-2-3